Солома как источник азота и других микроэлементов для растений

Азот в жизни растений. Его роль, недостаток и способы восстановления

Один из важнейших макроэлементов. Без его участия невозможно развитие растений. Он отвечает за обмен веществ. При этом находится в составе всех белков, цитоплазмы, ядер клеток, аминокислот, хлорофилла, гормонов, витаминов и других соединений. Все это – азот.

Растениям он необходим постоянно, так как отвечает за все процессы питания. Поэтому его недостаток задевает жизненно важные функции.

Особенно нуждаются в этом элементе молодые растения во время активного роста стеблей и листьев. Они содержат наибольшее количество азота. Но с развитием, его доля снижается.

Роль азота в жизни растения заключается еще в том, что он больше других элементов влияет на качество и количество урожая. Поэтому, чтобы вырастить богатый урожай нужно с ранней весны позаботиться о достатке азота.

Азот в природе

Растения используют азот в виде солей аммония (NH4 + ), и нитратов (NO3 – ):

  • Аммоний называют “долгим” азотом, так как он неподвижен в почве, не вымывается и долго превращается в нитратную форму. Больше необходим на ранних стадиях развития растения.
  • Нитраты – “быстрый” азот. Быстро действуют, но легко вымываются. В большинстве случаев азот поступает в растения именно в виде нитратов.

Обе формы полезны при разных условиях: когда нужно быстро подкормить растение, используют нитраты. А когда необходимо поступление азота только на определенной фазе роста, вносят аммонийные удобрения.

Нитраты не задерживаются в почве и могут вымываться со склонов, выноситься с урожаем:

  1. В водопроницаемых почвах (песчаных) вымывание азота происходит намного интенсивней, чем в почвах с низкой фильтрационной способностью (глинистых). Для уменьшения вымывания воды и соответственно азота, вносят перегной. Он имеет хорошую влагоемкость, склеивает частички почвы и заполняет собой пространство между ними.
  2. Также происходит потеря азота при денитрификации, когда почвенные бактерии перерабатывают нитрат, используя его для поддержания своей жизнедеятельности. В результате он становится недоступным.
  3. Так как азот накапливается в разных частях растения, то при уборке, уносится с урожаем. Разные культуры по-разному его используют. В зависимости от вида, в среднем выносится 100-200 кг/га органических веществ, содержащих азот.
  4. Также он выносится при улетучивании мочевины, когда уреаза превращает ее в аммиак.

Азот атмосферы – это единственный природный источник азота. В газообразном состоянии находится в неограниченном количестве. Но его могут использовать лишь некоторые растения. Свойство переводить такой азот в форму, доступную для усвоения имеют азотфиксирующие бактерии. Такие бактерии находятся на корнях бобовых (соя, люцерна, клевер). Поэтому для природного восполнения уровня азота, их высаживают на местах, где в будущем будут произрастать культурные растения. И после уборки бобовых, азот остается в почве.

Азот в гидропонике

В питательном растворе для гидропоники важно наличие обеих форм азота. С помощью контроля их соотношения, можно добиться стабильного значения рН. Потому что, если раствор имеет только аммоний – это приведет к понижению уровня рН раствора и его подкислению. И наоборот – при перевесе нитратов, повысится рН вокруг корней и раствор станет щелочным. В этом случае, если значение рН не соответствует нужному уровню, растение перестанет получать необходимые элементы для нормального развития. При значении рН 6,8 растения одинаково усваивают обе формы азота.

При одинаковых пропорциях аммоний больше понижает рН раствора, чем нитратный азот повышает его. Поэтому для стабилизации уровня рН аммония используют намного меньше, чем нитратов (в соотношении 1:3).

Еще одна важность правильного соотношения NH4 + и NO3 – в том, что повышенное содержание аммония приводит к дефициту кальция и магния.

Соотношение нитратов и аммония очень важно. Но оно может меняться в зависимости от сорта растения, температуры раствора, стадии роста, освещения:

    1. Если при образовании плодов у некоторых растений в питательном растворе присутствует аммоний – это снижает урожайность и может привести к заболеваниям. Поэтому лучше использовать аммоний только на начальной стадии развития. 2. При повышении температуры увеличивается потребление сахара и уменьшается обмен веществ аммония с ним. Поэтому при повышенных температурах недопустимо содержание высокого уровня аммония. 3. Наоборот, при низкой температуре нитраты транспортируются медленнее, поэтому использование их в растворе негативно сказывается на росте растения.

Нехватка азота у растений

Чтобы понять, как выглядит растение с недостатком азота N2 не нужно иметь специальных знаний. Главный признак – это прекращение роста и общая слабость. Растение с нормальным его содержанием выглядит здоровым, с насыщенным зеленым цветом листьев. Даже на начальной стадии азотное голодание может привести к потере половины урожая.

Недостаток азота у растений проявляет себя по таким признакам:

  • растут слабые, короткие побеги;
  • недостаток листьев, а те, что есть, теряют яркую окраску;
  • новые листья мелкие, узкие, бледно-зеленые с красноватыми оттенками, рано опадают;
  • пожелтение жилок с расположенными возле них частями листа. Сначала желтеть начинают нижние, старые листья;
  • слабое ветвление деревьев;
  • слабое цветение;
  • плоды вырастают мелкие, рано осыпаются.

Как восполнить дефицит азота у растений

В почве

Азот для подкормки растений вносят в виде: калиевой, натриевой селитры, аммиачных, органических и других удобрений. Они повышают урожайность практически всех культур.

Почву удобряют ранней весной и в начале лета. За это время растение наиболее активно развивается. Своевременная подкормка стимулирует обмен веществ и активизирует рост.

Положительно удобрения влияют после весенних заморозков и понижений температуры. А вносить их после середины лета не рекомендуется. Это продлит рост, и существенно снизит зимостойкость растений. Также возможно накопление нитратов в плодах.

В гидропонике

Для гидропоники используют минеральные удобрения. Обычные органические удобрения (навоз) не используют, потому что они могут привести к загниванию. Это происходит из-за того, что органические удобрения расщепляются организмами, которые находятся только в почве. А удобрения для гидропоники содержат все готовые для использования элементы.

Раньше, чтобы получить питательный раствор, нужно было самому смешивать химические реактивы. Но это очень сложно. Сейчас раствор для гидропоники можно приготовить самому с помощью готовых удобрений:

Минеральное удобрение Plagron Hydro A/B 5 л. Двухкомпонентные азотсодержащие удобрения идеально подходят для профессионалов с большим опытом выращивания. Они содержат все необходимые питательные вещества даже для самых капризных растений. Используют эти подкормки во время развития, цветения и плодоношения. Они предназначены для гидропонного метода выращивания.

Стимулятор корнеобразования Plagron Power Roots 1 л. Это удобрение обеспечивает рост сильной, развитой корневой системы. В результате увеличивается усвоение питательных веществ, ускоряется рост молодых побегов. Используется во время вегетации и после пересадки для укрепления иммунитета. Подходит для любого способа выращивания.

Минеральное удобрение FloraGro 500 мл. Стимулирует активное развитие и укрепление корневой системы за счет обеспечения растения главными элементами. Используется на стадии вегетации для гидропонного способа, выращивания в почве, субстратах.

Работа TDS метра основана на электропроводности водной – электроды, погруженные в водную среду, создают между собой электрическое поле. Чистая дистиллированная вода сама по себе ток не проводит, образуют его растворенные в воде различные примеси и соединения.

Солемер или TDS метр – это стационарный малогабаритный прибор для измерения жесткости воды и процентного содержания в ней разного вида веществ.

Кокосовый субстрат, изготавливаемый из растертой в мелкую крошку кожуры и волокон кокосового ореха, − достаточно молодой материал.

Чтобы пересаженные цветы хорошо росли и развивались, их корням необходима влага и возможность дышать через земляную почву. Обычная земляная смесь представляет собой достаточно плотную субстанцию, плохо пропускающую живительную влагу и воздух к корням.

Керамзитовый дренажный материал или керамзит – это одна из разновидностей субстрата применяемая для укоренения черенков роз гвоздик и иных цветочных растений.

В прошлом веке ученые открыли вещества, влияющие на работу тех или иных функций растения. С помощью этих веществ, каждый садовод может повлиять на жизненный цикл растения, ускорить или замедлить его развитие. Подобные вещества называют стимуляторами роста.

Современные технологии позволяют контролировать развитие растений по воле человека. Еще в 20 веке ученые открыли фитогормоны, вещества, стимулирующие все процессы жизнедеятельности и контролирующие их протекание

При выращивании растений без солнечных лучей нужно сильно постараться, чтоб предоставить все необходимое. Ведь питается растение именно световыми лучами, без которых рост и развитие невозможно, грунт и удобрение играют второстепенную роль.

  • Интернет магазин ООО «АгроДом»
  • Страна: Россия
  • E-mail: [email protected]
  • Телефон: 8 (800) 555–42–84
  • Мы работаем: пн-пт 9:00–23:00; сб 10:00–19:00; вс 12:00-20:00

Узнайте первым о предстоящих акциях и скидках. Мы не рассылаем спам и не передаем email третьим лицам

Минеральные удобрения для растений

1. Виды минеральных удобрений

Минеральные удобрения – это неорганические соединения, в состав которых входят необходимые для благоприятного развития растений элементы питания. Питательные вещества содержатся в минеральных удобрениях в виде солей.

Минеральные удобрения подразделяются на простые и комплексные. В состав простых удобрений входит один элемент питания. К ним можно отнести: азотные, калийные и фосфорные группы. К комплексным относятся: удобрения, содержащие в своём составе несколько химических элементов, в оптимально подходящем соотношении для конкретных поставленных задач.

Читайте также:  Методы борьбы с капустной белянкой

Все минеральные удобрения делятся на две категории: макроэлементы и микроэлементы. Макроэлементы поглощаются растениями в больших количествах и к ним относится: азот, фосфор, калий, кальций, магний, сера и железо. Микроэлементы поглощаются растениями в очень маленьких количествах и к ним относятся: марганец, бор, медь, цинк, молибден, йод и кобальт.

2. Азот для растений.

Азот необходим для развития вегетативной (зеленной) массы у растений. Культуры, обеспеченные содержанием азота, быстро растут. Их листья отличаются насыщенным зелёным цветом и большим размером. Недостаток азота замедляет рост и развитие растения. Вегетативная масса не нарастает, а цвет становится светло-зеленым. В последствии культуры вырастают мелкими, и снижается урожай.

Избыточное содержание азота в почве влечёт за собой тяжёлые последствия. Растение обильно разрастается, но период цветения наступает позже положенного срока.

Азотные минеральные удобрения:

Аммиачная селитра (нитрат аммония или азотнокислый аммоний)

Сульфат аммония (сернокислый аммоний)

Натриевая соль (нитрат натрия или азотнокислый натрий)

Кальциевая селитра (азотнокислый кальций или нитрат кальция)

Сульфонитрат аммония (монтан-селитра или лейна-селитра)

3. Фосфор для растений.

Фосфор для растений является источником жизненной энергии. Этот химический элемент входит в состав ДНК и РНК и контролирует обменные процессы в растениях. Является необходимым источником питания для растительных культур. Без него растение истощается и погибает. С достаточным количеством фосфора растения лучше развиваются и плодоносят.

Недостаток фосфора можно легко определить по надземной части растения. Она приобретает сначала тёмно-зелёный цвет, а затем становится багрово-фиолетовой и края листьев начинают подсыхать. Растения начинает сбрасывать листву и бутоны. Корневая система ослабевает, и стебель начинает выпадать из земли.

Избыточное содержание фосфора не грозит растениям никакими последствиями в связи с тем, что потребляется только необходимое количество.

Фосфорные минеральные удобрения:

4. Калий для растений.

Калий для растений стимулирует нормальное течение фотосинтеза. В растениях калий находится в ионной форме. Около 80% калия находится в клеточном соке и легко вымывается водой. При достаточном содержании калия, растение лучше переносит недостаток влаги и легче адаптируется к низким температурам. Более устойчиво к болезням.

Недостаток калия выражается у растений в ослабленном стебле. Происходит торможение в развитии репродуктивных органов. Приостанавливается образование белка в клетках растений. У растения развивается бурая пятнистость. Края листьев скручиваются и засыхают. Растение замедляет свой рост и приостанавливается развитие бутонов.

Избыток калия затрудняет усвоение азота, магния и кальция. Большое количество калия в тканях затормаживает рост растений.

Калийные минеральные удобрения:

5. Кальций для растений.

В данном элементе нуждаются далеко не все растения, и используется он в основном на кислых почвах. Кальций для растений очень активно стимулирует рост корневой системы и особенно важен в самом начале развития. Также данный элемент облегчает поглощение растениями важных элементов питания. Защищает растение от переизбыточного поглощения аммиачного азота и способствует защите от некоторых болезней.

При недостатке кальция замедляется рост корневой системы, вследствие чего происходит загнивание корней. На листьях появляются хлоротичные пятна и полосы, верхушки побегов скручиваются и засыхают.

Избыток кальция гораздо опаснее его недостатка. Он затрудняет усвоение азота, бора и калия. Большое содержание кальция наблюдается в жёсткой воде.

Минеральные удобрения кальция:

Кальциевая селитра (является нитратом)

6. Магний для растений.

Принимает активное участие в фотосинтезе. Выполняет структурообразовательную роль.

При недостатке магния листья скручиваются, боковые побеги растут медленно. Симптомы переизбытка магния схожи с симптомами недостатка кальция.

Магниевые минеральные удобрения:

7. Сера для растений.

Улучшает усвоение соединений азота у растений. Повышает устойчивость культур к некомфортным температурам, засухе, а также к радиации. Серу невозможно заменить другими элементами минерального питания.

Нехватка серы приводит к замедлению фотосинтеза на 40%. По симптомам недостаток серы схож с недостатком азота. Разница лишь в том, что дефицит азота проявляется в первую очередь на нижних старых листьях, а дефицит серы на молодых побегах. Переизбыток серы не представляет серьёзной опасности для растений.

Сера содержится во многих комплексных удобрениях.

8.Микроэлементы для растений.

К микроэлементам относятся: марганец, бор, медь, молибден, цинк, йод, кобальт и др. Потребность растений в данных химических элементах очень мала, но она жизненно необходима. При недостатке одного из элементов растение не погибнет, но урожай будет хуже, и развиваться растение начнёт медленнее. Почти все микроэлементы являются активными катализаторами, ускоряющими целый ряд биохимических реакций. Они являются своеобразными иммуномодуляторами для растений. Поэтому не стоит недооценивать важность данных химических элементов в жизни растений. Выбор комплексных удобрений содержащих микроэлементы очень велик и разнообразен. Каждый огородник должен подбирать наиболее подходящий для себя вариант. Ознакомившись с нашими советами огородникам на эту тему, вам будет проще выращивать овощи на даче.

Микроэлементы, необходимые для развития растений.

Они не встраиваются в структуру тканей растений, иными словами, не создают «тело» и «массу».

Входящие в состав многих ферментов и витаминов, эти элементы выполняют функции биологических ускорителей и регуляторов сложных биохимических процессов. При их дефиците или избытке в почве у овощей, плодовых деревьев, кустарников и цветов нарушается обмен веществ, возникают различные заболевания. Поэтому роль микроэлементов нельзя недооценивать.

Признаки минерального голодания

Семеро важных

Железо регулирует дыхание растений. Его недостаток приводит к нарушению фотосинтеза и, как следствие, к хлорозу (потеря зеленой окраски и побеление) молодых верхушечных листьев. Иногда страдают и побеги – они покрываются бурыми пятнами.

Марганец также участвует в образовании хлорофилла, и его дефицит тоже проявляется в виде хлороза. Однако картина здесь несколько иная: пластинки листа желтеют, но жилки остаются зелеными – возникает пятнистость листьев, приводящая к отмиранию участков ткани.

Бор способствует процессу роста. При его недостатке гибнет верхушечная почка (точка роста). Возможно пожелтение листьев, жилки делаются коричневыми или желтыми. Источники соединений бора – зола или навоз.

Молибден играет важную роль в азотном обмене и непосредственно влияет на урожайность. У растений, испытывающих его дефицит, на листьях появляются светлые пятна, возможно отмирание почек, плоды и клубни растрескиваются. Источник соединений молибдена – молибденовокислый аммоний.

Цинк регулирует клеточный обмен. Его нехватка проявляется в сильно выраженной крапчатости старых листьев, появлении на них уголков отмершей ткани, мелколиственности. Характерный признак дефицита цинка – розеточность плодовых: у молодых побегов яблони очень короткие междоузлия, а листья на конце побега собраны в розетку.

Медь активизирует образование белков и витаминов группы В. Этого элемента очень мало в песчаных и торфянистых почвах. Его недостаток проявляется в устойчивом увядании верхних листьев, даже при хорошем обеспечении влагой, вплоть до их опадания.

Сера участвует в образовании витаминов, аминокислот и белков. Ее дефицит выявить трудно, так как внешне он никак не выражен. К счастью, и возникает довольно редко. Источник серы – сернистые соединения других минеральных элементов (сульфат калия, сульфат аммония, сульфат магния).

Как не мешать друг другу

Казалось бы, самый простой способ, позволяющий обеспечить достаточное содержание микроэлементов в почве, – внесение в нее соответствующих солей-удобрений. Но почва – очень сложная система, в которой взаимодействуют все минеральные элементы, и это необходимо учитывать.

Растения могут усвоить любой элемент, если он находится в растворимом состоянии (почвенный раствор) и доступен корням. А элементы, в свою очередь, могут переходить из растворимого состояния в нерастворимое – и наоборот, это зависит от показателя кислотности почвы (рН) и их взаимовлияния.

Так, при уровне рН более 5,5 (кислые и слабокислые почвы) медь, цинк, марганец, железо доступны для усвоения, а молибден – нет. При рН, равном 7 и более (нейтральная или щелочная реакция почвы), медь, молибден, железо, цинк, марганец делаются «малоподвижными» и не переходят в усвояемые растворы.

На окультуренных почвах необходимо учитывать и «фосфорный фактор»: внесенные в почву фосфорные удобрения (суперфосфаты) способствуют образованию нерастворимых соединений железа, цинка и меди, отчего усвоение этих элементов затрудняется.

Садовнику-непрофессионалу нелегко усвоить все эти биохимические тонкости, еще более сложно — учитывать их и контролировать. Поэтому лучше использовать так называемые хелатные (органические) соединения микроэлементов (вместо их солей).

Хелаты имеют очень устойчивую структуру. При изменении почвенных условий микроэлементы, находящиеся в их составе, на это не реагируют и их взаимодействие исключается. При выборе удобрения вы должны решить, что будете применять – комплексное полное или только набор микроэлементов. Однако в обоих случаях необходимо убедиться в том, что элементы питания присутствуют в виде хелатных соединений.

И еще раз.

Некоторые элементы минерального питания растения способны использовать многократно. Этот процесс, который называется реутилизацией, распространяется в первую очередь на макроэлементы – азот, фосфор, калий и магний. При недостаточном содержании этих веществ в почве растение жертвует старыми листьями – и извлекает эти элементы уже из них. Поэтому внесезонное пожелтение и опадание старых листьев – показатель элементного голодания.

Читайте также:  Гриб боровик: описание и виды

Реутилизации поддаются не все элементы. Сера, например, – лишь частично, а кальций, железо, марганец, бор, медь и цинк вообще не могут использоваться многократно.
Способности растений к количественному потреблению элементов минерального питания и их «предпочтения» также существенно различаются. Некоторые из них проявляют самую настоящую избирательность и имеют репутацию растений-концентраторов.

Накопление элементов растениями

  • кальций – бобовые, подсолнечник, капуста, картофель, гречиха
  • калий – бобовые, картофель, томаты, подсолнечник, свекла, капуста, огурцы
  • кремний и фосфор – злаки
  • сера – бобовые, лук, чеснок
  • марганец – фрукты, брусника, черника, голубика, свекла
  • цинк – свекла, кукуруза и табака

Зная, какой элемент будет в первую очередь извлечен тем или иным растением из почвы, можно примерно рассчитать баланс питания каждого из них.

Внесение микроэлементов

Обычно микроэлементы в виде солей рекомендуют не вносить в почву, а использовать для внекорневой подкормки. То есть опрыскивать их раствором листья растений. Это связано с тем, что эффективность подобных корневых подкормок не слишком велика – во многом она зависит от конкретных почвенных условий: состава, кислотности, температур и т.д. При внекорневой же подкормке удобрения усваиваются почти мгновенно, особенно если раствор попадает на внутреннюю сторону листьев. Правда, здесь также существуют ограничения:
растения более активно поглощают «пищу» своими листовыми устьицами в утренние (с 6.00 до 8.00) и в вечерние (с 18.00 до 20.00) часы] в остальное время удобрять их нецелесообразно.

Впрочем, все это относится исключительно к микроэлементам в виде солей. Хелатные соединения усваиваются растениями независимо от кислотности почвы, поэтому могут быть использованы и для корневой, и для внекорневой подкормки.

Сельское хозяйство | UniversityAgro.ru

Агрономия, земледелие, сельское хозяйство

Популярные статьи

Солома

Научные основы применения соломы в качестве органического удобрения

Солома может использоваться в качестве органического удобрения. Для этих целей она широко применяется в зарубежном и отечественном земледелии, в хозяйствах, специализирующихся на производстве зерна и. Научными предпосылкам применения соломы в качестве органического удобрения:

  1. Солома является источник питательных элементов. Химический состав соломы меняется в зависимости от почвенных и погодных условий. В среднем при влажности 16% содержит: 0,5% азота, 0,25% — фосфора (P2O5), 0,8-1,0% — калия (K2O), 35-40% углерода, а также сера, кальций, магний, бор, медь, марганец, молибден, цинк, кобальт.

При средних урожаях зерновых 20-30 ц/га в почву с соломой возвращается 10-15 кг азота, 5-8 кг — фосфора (P2O5), 18-24 кг калия (K2O).

  1. Солома служит энергетическим материалом для образования гумуса и повышения микробиологической активности почвы. В химический состав соломы зерновых культур входит большое количество безазотистых веществ (целлюлоза, гемицеллюлоза, лигнин) при небольшом содержании азота и минеральных элементов. Соотношение С:N (70-80:1) в соломе влияет на её разложение в почве. Солома обеспечивает почвенную микрофлору доступным углеродом, но целлюлозоразлагающие микроорганизмы испытывают большую потребность в азоте, поэтому, учитывая его небольшое количество в соломе, микроорганизмы потребляют минеральный азот почвы, то есть происходит процесс иммобилизации азота. При недостатке азота тормозятся процессы разложения соломы. Для нормального разложения соломы соотношение C:N должно быть 20-30:1.

Эффективность удобрения соломой возрастает при дополнительном внесении азота. Сравнительная оценка удобрения соломой с дополнительной компенсацией азота и навозом показывает их равную эффективность. При этом важно, чтобы с внесенной соломой и азотом соотношение С:N достигалось равным 20:1. Для этого при запашке соломы дополнительно вносят 0,5-1,5% азота от ее массы, или 5-15 кг N на 1 т соломы минеральных или органических удобрений.

При компостировании соломы в аэробных условиях выход гумуса составляет 7,9%, с добавлением минерального азота — 8,5% от массы соломы. Наиболее интенсивное гумусообразование происходит в первые 4 месяца компостирования, в период разложения целлюлозы и гемицеллюлозы. Причем гумус накапливается в максимальном количестве в период самой высокой численности микроорганизмов.

В сочетании с минеральным удобрением, жидким навозом или используемыми в качестве сидератов бобовыми культурами солома по действию на содержание гумуса не уступает эквивалентному количеству навоза.

  1. Солома для удобрения способствует улучшению физико-химических свойств почвы, уменьшает потери азота, повышает доступность фосфатов и биологическую активность почвы, улучшает условия питания растений. Положительное действие соломы возможно при создании благоприятных условий для разложения. Например, скорость микробного разложения соломы зависит от наличия источников питания, их численности, видового состава и активности, типа почвы, окультуренности, температуры, влажности, аэрации. Так, разложение соломы увеличивается при внесении азота, фосфора, марганца, молибдена, бора, меди.

Интенсивность разложения клетчатки возрастает от дерново-подзолистых почв к серым лесным и чернозёмам. Оптимальная температура разложения клетчатки 28-30 °С при влажности почвы 60-70% от полной влагоемкости. Интенсивность разложения в верхнем слое почвы выше благодаря хорошей аэрацией, большой численности и разнообразия видового состава микроорганизмов.

Солома усиливает азотфиксирующую способность и ферментативную активность почвы.

  1. Часто в первый год после внесения соломы урожай злаковых культур уменьшается из-за содержащихся и образующихся при разложении токсических соединений, а также ухудшением азотного питания растений.

Особое значение удобрение соломой имеет для бобовых культур. Эффективность соломы увеличивается при обработке семян бобовых нитрагином, поэтому на площадях, удобренных соломой, в первую очередь стараются размещать бобовые или пропашные культуры. Заблаговременно внесенная солома стимулирует азотфиксирующую способность бобовых и повышает их урожайность. Азотное питание пропашных культур обеспечивается в результате мобилизации почвенного азота при междурядных обработках.

  1. Азот минеральных удобрений уменьшает депрессирующее действие соломы на зерновые культуры. Иммобилизованный в присутствии соломы азот минеральных удобрений более подвижен, меньше устойчив к кислотному гидролизу и минерализуется быстрее, чем азот, иммобилизованный без соломы, особенно азот гумуса. В последействии солома усиливает процессы мобилизации азота, повышает использование растениями как иммобилизованного азота, так и почвенного, что определяет положительное действие на урожай последующих культур.

Органические удобрения содержащие азот

Азот в органических удобрениях содержится в небольшом количестве. 0,5-1% азота содержат все виды навоза. Птичий помет 1-2,5% азота. Больше всего в процентном соотношении азота в утином, курином и голубином помете, но он также и самые токсичные. Максимальное количество органического азота содержит биогумус до 3%.

Почти весь азот содержащейся в почве находится в ней в форме органических веществ. Азот доступен растениям исключительно только в форме минеральных соединений. На долю минерального азота почвы приходится не более 1 — 3% от общего его количества. И только с помощью почвенных микроорганизмов происходит переход азота из органических соединений в минеральный азот. Который и усваивается растениями.

Природные органические азотные удобрения можно сделать и своими руками: компостные кучи (особенно на торфяной основе) содержат некоторое количество азота (до 1,5%), компост из бытового мусора также содержит до 1,5 % азота. Зеленая масса (люпин, донник, вика, клевер) содержат около 0,4-0,7% азота, зеленая листва содержит 1-1,2%, озерный ил (1,7-2,5%).

Для «оздоровления» компоста рекомендуют использовать ряд растений, в которых содержатся вещества, подавляющие развитие гнилостных процессов. К ним относят листовую горчицу, разнообразные мяты, крапиву, окопник лекарственный (он богат растворимым калием), хрен.

Органическое удобрение с большим содержанием азота можно приготовить из коровяка. Для этого в бочку положить коровяк, заполнив бочку на одну треть, залить водой и дать забродить в течении 1-2 недель. Затем разводить водой в 3-4 раза и поливать растения. Предварительно полив водой.

Можно сделать такой настой из сорняков. Внесение любых азотных удобрений закисляет почву. Поэтому для стабилизации кислотности почвы надо вносить золу, доломитовую муку, известь.

Но одновременно выносить азотные удобрения с золой не рекомендуется. Потому что при таком сочетании азот превращается в аммиак и быстро улетучивается. Поэтому сначала вносим органические азотные удобрения. А дня через три вносим золу с обязательным рыхлением. Таким образом заделываем золу в почву.

Так в чем же содержится органический азот для подкормки растений?

Натуральные азотные удобрения и содержание в них азота.

  • навоз — до 1 % (конский — 0,3-0,8 %, свиной — 0,3-1,0 %, коровяк — 0,1-0,7 %);
  • биогумус он же вермикомпост — до 3%
  • перегной — до 1 %;
  • помет (птичий, голубиный, утиный) — до 2,5 %;
  • компост с торфом — до 1,5 %;
  • бытовые отходы — до 1,5 %;
  • зеленая листва — до 1,2 %;
  • зеленая масса — до 0,7 %;
  • озерный ил — до 2,5 %.

Органические азотные удобрения сдерживают накопление нитратов в грунте, но применяют их с осторожностью. Внесение в почву навоза (компоста) сопровождается выделением азота до 2 гр/кг в течение 3-4 месяцев. Растения легко его усваивают.

Еще немного статистики, одна тонна полупревшего удобрения содержит по 15 кг аммиачной селитры, 12,5 кг хлористого калия и столько же суперфосфата.

Читайте также:  В чем особенность томата трюфель?

Ежегодно в почву вместе с атмосферными осадками на одну сотку земли попадает до 40 гр. связного азота. Помимо этого почвенная микрофлора перерабатывающая атмосферный азот, способна обогатить почву азотом в количестве от 50 до 100 гр на сотку. Больше связного азота для почвы могут дать только специальные азотфиксирующие растения.

Естественным источником органического азота могут стать азотфиксирующие растения, используемые как запашные культуры. Определенные растения, такие, как бобы и клевер, люпин, люцерна и множество других , накапливают азот в клубеньках своих корней. Эти клубеньки выпускают азот в почву постепенно, в течение всей жизни растения, и когда растение умирает, оставшийся азот увеличивает общее плодородие почвы. Такие растения называют сидератами и вообще сидераты способны принести ощутимую пользу вашему огороду.

Сотка гороха или фасоли посаженная на вашем участке за год способна накопить в почве 700 грамм азота. Сотка клевера — 130 грамм. Люпина — 170 грамм, а люцерны — 280 грамм.

Высевая эти растения после уборки урожая и удаления растительных остатков с участка вы обогатите почву азотом.

Молочная сыворотка как органический источник азота, фосфора и калия.

Самым доступным азотистым удобрением для растений является молочная сыворотка. За счет содержания в ней белка, который в процессе полива растений с добавление молочной сыворотки попадает в почву. И там под воздействием почвенной микрофлоры высвобождается азот который становиться доступным для растений. То есть таким образом осуществляется азотная подкормка растений.

Для проведения подобной подкормки необходимо 1 литр молочной сыворотки разбавить в 10 литрах воды. И полить растения из расчета 1 литр разбавленной в 10 раз сыворотки на растение.

Если предварительно к 1 литру сыворотки добавить 40 мл аптечного аммиака. То аммиак провзаимодействует с молочной кислотой в результате которого получится лактат аммония.

Используя подобный раствор на регулярной основе мы не сможет повлиять на кислотность почвы что очень хорошо. Так как если бы мы не добавляли бы аммиак к молочной сыворотке. То при частом использований молочной сыворотки для корневой подкормки растений кислотность почвы неминуемо бы повысилась.

Кроме того молочная сыворотка сама содержит в себе большое количество минеральных веществ. В каждых 100 грамм молочной сыворотки содержится:

  • 78 миллиграмм фосфора;
  • 143 миллиграмма калия ;
  • 103 миллиграмм кальция.

А также содержит в незначительные количествах магний и натрий.

Натуральные азотсодержащие удобрения полученные путем промышленной переработки.

Кровяная мука — органический продукт, сделанный из высушенной крови, и она содержит 13 процентов суммарного азота. Это очень высокий процент содержания азота в удобрении. Вы можете использовать кровяную муку как азотное удобрение, посыпая ею поверхность почвы и поливая сверху водой, чтобы способствовать впитыванию кровяной муки. Можно также, смешав кровяную муку непосредственно с водой, применить ее как жидкое удобрение.

Кровяная мука — особенно хороший источник азота для таких любителей плодородной почвы, как салат-латук и кукуруза, поскольку действует она быстро.
Кровяную муку можно использовать как компонент компоста или ускоритель разложения других органических материалов, поскольку она является катализатором процессов распада.

Соевая мука является источником азотного питания микроорганизмов почвы. Когда соевая мука будет разложена почвенной микрофлорой, тогда минерализованный азот станет доступен растениям. Её также можно использовать как компонент компоста наряду с рыбной мукой. Которая после минерализации станет не только источником азота, но и ряда микроэлементов.

Азотные удобрения Видео:

Солома как источник азота и других микроэлементов для растений

Высокие цены на удобрения, значительность материальных и трудовых затрат на применение местных органических удобрений, требует изыскания экономически выгодных приемов, технологий и систем их применения.

В последние годы, наряду с традиционными видами органических удобрений, стала широко использоваться солома зерновых культур, не предназначенная для нужд животноводства.

    Актуальность использования соломы в качестве удобрения определяется двумя основными причинами:
  • прежде всего, ухудшением потенциального плодородия почв, снижением содержания органического вещества в пахотном горизонте. Так, в районе за период между 3 и 4 циклами обследования (1988-1996 гг) содержание фосфора понизилось на 15,5 мг/кг, калия – на 8,4 мг/кг.
  • недостаточными объемами применения минеральных и органических удобрений. Если в 1986-1990 гг на гектар пашни вносилось 36,0 кг д.в. минеральных и 3,0 т органических удобрений, то в настоящее время минеральные удобрения не вносятся уже 10 лет, а навоз – из расчета 100 кг/га. Солома внесена на площади 1,9 тыс. га при плане 4 тыс.

Солома содержит многие элементы питания растений.

Содержание элементов питания в соломе.

СоломаСухое вещество, %Органическое вещество, %АзотФосфорКалийКальцийМагнийОтношение С:N (N=1)
% к сырой массе
Пшеничная87,8820,670,070,980,330,1280-90
Ячменная89,5820,500,181,120,300,0870-80
Овсяная86,4800,650,111,120,410,1180-90
Гороховая91,5801,400,241,681,230,3220-25

В зависимости от вида соломы с одной тонной на гектар поступит (кг/га): органического вещества 810, азота 5-14, фосфора 0,7-2,4; калия 10-17, кальция 3-12, магния 0,8-3. Кроме того, поступят микроэлементы: бор, медь, марганец, молибден, цинк, кобальт.

В прямой зависимости от соотношения углерода к азоту (С:N) находится скорость разложения соломы. Чем оно уже, тем быстрее разложится солома. При внесении соломы в чистом виде в первый год может наблюдаться некоторое снижение урожайности за счет дополнительного потребления азота почвы микрофлорой, разлагающей солому. В этом случае на 1 т соломы следует внести 10-12 кг азота.

По содержанию органического вещества и влиянию на воспроизводство гумуса 1 т соломы равноценна 3,5 т подстилочного навоза. Исследованиями установлено, что применение соломы в течение 7-8 лет повышает содержание гумуса в дерново-подзолистой почве на 0,24%, южном черноземе – на 0,2%. В степной зоне (данные СибНИИСХоза), достигнуто увеличение гумуса на 0,21% за период с 1966 по 1992 год.

Внесение соломы практически исключает потери тонкодисперсной части почвы, а вместе с ней и гумуса от ветровой и водной эрозии.

Заблаговременно внесенная в почву солома стимулирует азотфиксирующую способность бобовых культур и существенно повышает их урожай. Органическое вещество соломы служит источником углекислого газа, потребляемого растениями. Внесение соломы предотвращает вымывание растворимого азота, закрепленного в органических соединениях, повышает доступность фосфатов, улучшает условия питания растений.

Систематическое применение соломы на кислых почвах постепенно уменьшает их кислотность.

Мульчирование соломой уменьшает, а иногда полностью устраняет опасность поверхностного стока, способствует более равномерному распределению воды на поверхности почвы, улучшает структуру пахотного слоя, ослабляет испарение влаги.

Внесение соломы увеличивает водопроницаемость почв в 1,5-2 раза и запасы влаги в метровом слое на 25 мм. На мульчированных землях в два раза снижается процесс эрозии. Смыв на склонах уменьшается в 8 раз.

Внесение в почву соломы способствует снижению плотности пахотного и подпахотного горизонтов. Глинистые почвы становятся более рыхлыми, а значит, быстрее просыхают.

Технология непосредственного применения соломы на удобрение сводится к её измельчению и равномерному распределению по поверхности почвы в период уборки с её заделкой, предусмотренной системой обработки почв. Лучше всего применять солому на удобрение в системе паровой обработки почвы. В любом случае следует учитывать почвенно-климатические условия и биологические особенности возделываемых культур. Разложение органического вещества растительных остатков происходит тем быстрее, чем богаче оно азотом. Установлено, что за 2,5-4 месяца разлагается до 46% соломы, за год – полтора – до 80%, оставшаяся часть позднее.

Применение соломы в качестве органического удобрения позволяет увеличить урожайность в среднем на 1,4 – 3,2 ц/га, содержание клейковины возрастает на 3%, объем хлеба увеличивается на 22%. Рентабельность при использовании соломы достигает 70% и более. По данным СибНИИСХоза, внесение минеральных удобрений (N13Р45) совместно с соломой обеспечивает прибавку урожая 5-7 ц/га.

Систематическое применение соломы усиливает её эффективность. Внесение соломы следует практиковать во всех полях севооборотов, но предпочтение нужно отдать удаленным массивам.

    Об экономической выгоде внесения измельченной соломы говорят и другие примеры:
  • при использовании соломы прослеживается четкая тенденция к снижению поражаемости яровой пшеницы наиболее распространенным заболеванием – корневой гнилью: в фазу всходы – кущения на 52%, в фазу выхода в трубку – на 29%;
  • затраты на уборку соломы снижаются в два раза;
  • в экологическом плане утилизируется огромная масса органического вещества, которая минерализуется в почве, элементы её полностью поглощаются почвенным комплексом, без выделения в воздушную среду;
  • солома повторно включается в круговорот минерального и органического питания растений, для формирования новой биомассы растений и урожая;
  • с ликвидацией скирд снижается численность мышевидных грызунов, накопление семян сорной растительности.

Ничего не внося в почву, не заботясь о повышении её плодородия, нельзя надеяться на получение высоких и стабильных урожаев.

Ссылка на основную публикацию